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A. Scientific and Technical Objectives 

Reconsolidation is a storage process occurring during retrieval, in which an existing memory 
becomes labile and amenable to being updated. The process is implicated in learning and 
memory flexibility when healthy; it is correlated with amnesia and compulsive disorders 
when corrupted. The process of reconsolidation is observed both in neurophysiological and in 
psychological studies. The underlying objective of this project was to elucidate a functional 
and algorithmic understanding of reconsolidation in order to comprehend the particular 
benefits the process provides humans to better adapt in dynamic environments. The project 
also examined the disadvantages stemming from a lack of flexibility when reconsolidation 
does not work well. The intent is to employ an empirical understanding of the process and 
introduce a significantly improved thinking machine methodology. This new methodology 
can employ computational learning algorithms with the functional benefits resulting from 
reconsolidation. Applications include the design of machinery for recognizing dynamically 
changing concepts with contextual sensitivity, tracking movements in naturally changing 
environments, and clustering objects during monotonic changes. This research may start a 
new subfield of machine learning since current recognition and clustering applications rely on 
static objects and multiple repetitions of the sample set of images, while reality may provide 
dynamic data characterized by trajectories. Significantly, our new approach can successfully 
interface with this sort of realistic dynamical input. Furthermore, unlike computerized 
memories and other state of the art cognitive architectures, our memory system has the ability 
to process on-line and in real-time as objects change. Such a novel computational memory 
also has the potential to underlie improved methods of human-robot interaction in the future, 
relying on more human-like representations and functionality. 

B. Approach 

We allocated our efforts along the following activity tracks: 
A: Relation to biology and psychology: Al. Analyzing existing biological and behavior data 
following reconsolidation: We asked, what do updated memories contain after the 
reconsolidation process integrates existing memories with newer experience? Are older 
memories gone after memory changes, as seen in hippocampus place cells CA3 and CA1 
(Neuron 2005) and as seen in the psychophysics of morphing faces (Vision Res 2007)? And, 
why doesn't memory change when the series of inputs is not ordered monotonically? A2. 
Proposing a mathematical theory and finding principles that enable prediction and explicate 
memory attractor changes during reconsolidation. And investigating how changes are affected by 
the relative ordering of the input series. 
B: Building memory software to test the functionality of reconsolidation: Bl. Developing 
mathematical formulation and software models of the Reconsolidation Attractor Network (RAN) 
that demonstrate the properties and functional benefits of reconsolidation. The RAN provides 
flexible memory and has the desirable property of having the number of memory attractors 
independent of the input dimension, thus being free of memory saturation. Furthermore, these 



memories can be loaded on-line as in symbolic memories. B2. Developing mathematical 
formulation and software applications of the Kernel Based Memory (KBM) based on the 
mathematical theory of kernel functions and the related advances in statistical machine learning, 
as previously used in support vector machines (by Vapnik) and support vector clustering (by my 
group and in collaboration with Vapnik). We demonstrate the neural relevance of kernel theory 
and use it to explain flexibility as seen in existing data on reconsolidation in animals and 
humans, resulting in an extremely useful engineering tool. This memory is superior in real-time 
tracking, on-line recognition, and clustering of dynamically moving and changing objects. It 
works on both continuous and binary inputs, unlike state of the art methods in case based 
reasoning and in cognitive architectures, which are bound to symbolic information. Another 
unique property of this memory is that it can store and recall memories of unbounded amount 
and independent of input dimension, both theoretically and in practical numerical experiment. 

C. Concise Accomplishments 

We achieved our stated objectives by the design of two new attractor based memory systems. 
Unlike previous memory networks which load information by being presented static images, 
frequently with repetitions of the same images, here input comes realistically; images may 
change with time and the memory can retrieve and update accordingly. This approach put a new 
spin on the current state of the art in Machine Learning. Our newly designed memories are not 
bounded a priori by the number of memories, which are independent of input dimension. These 
memories demonstrate an efficient loading and retrieval algorithms and have the possibility of 
flexibility after loading. Until now, this combination of features has been considered impossible 
in the field of computational machine learning. In the Reconsolidation Attractor Network (RAN) 
attractors can be simply added, deleted, and updated on-line without harming existing memories. 
The RAN incorporates both fixed and flexible (reconsolidated) memories, a controlled flow with 
early stopping, and contextual effects. The model shares the properties seen in reconsolidation by 
proposing particular algorithms that change the attractors during this process. The Kernel Based 
Memory (KBM) includes the above stated attractive properties as in the RAN, having stronger 
mathematical support and being more practical in use. The KBM can use both binary and 
continuous-valued inputs. In terms of neural representation, the KBM is on the one hand a 
generalization of Radial Basis Function networks and on the other hand it is, in feature space, 
analogous to a Hopfield network. Input vectors do not have to adhere to a fixed or bounded 
dimensionality and input may increase and decrease dimensionality without the need to relearn 
previous memories. This latter property has never been suggested in neural memory models and 
it is very attractive both for psychological models and for practical applications. It is reminiscent 
of memories reconsolidated from basic knowledge to full expert knowledge or from memories 
transferred by emotion and attention to a state of higher importance, and thus containing more 
details. A continuous version of our network is suggested for modeling firing-rate dynamics. 
The discrete time version along with its algorithm of reconsolidation enables the network to 
generalize concepts and form clusters of input data, while input arrives from dynamic, realistic 
streams with superior results. Our method's efficacy is demonstrated through its ability to 
recognize head movements, follow a series of morphing faces, and track moving objects, such as 
missiles. 



Using these models, we simulated the order-dependent property seen in reconsolidation in 
neurophysiology and in psychophysics. We then, considered our model's actual memory 
representation to observe the actual representations at the beginning, during, and at the end of a 
process of following a series. We compared such representations to memory that learns from 
input samples, which originated in a trajectory, but were presented after shuffling. With these, 
we proposed general principles of reconsolidation-like processes in analog-symbolic memories. 
The result of our research caused the introduction of these highly efficient methods to the field of 
Machine Learning. 



D. Expanded Accomplishments 

Reconsolidation is a storage process distinct from the one time loading employed in 
consolidation. It serves to maintain, strengthen and modify existing memories shortly after their 
retrieval. 

Being a key process in learning and adaptive knowledge, problems in reconsolidation have been 
implicated in disorders such as Post Traumatic Stress disorder (PTSD), Obsessive Compulsive 
disorder (OCD), and even Addiction. Part of the recent growing interest in the reconsolidation 
process is the hope that controlling it may assist in psychiatric disorders such as PTSD or in the 
permanent extinction of compulsive fears. 

To understand reconsolidation we first analyzed existing studies and modeled them. A property 
that arises in all reconsolidation demonstrations is that memory representations are sensitive to 
the order of examples in the input stream. When examples change order, reconsolidation acts 
effectively to learn and update the gradual changes of objects. When examples are shuffled and 
the consistent direction of change is lost, existing memories do not update. This property is 
fundamental in our models. Another conclusion we reached by analyzing existing 
reconsolidation experiments is that the number of memories in the memory system cannot be a 
priori bounded and that it must be independent of input dimension. This property is fundamental 
when thinking in psychological terms, but somehow was not brought up in the main stream of 
memory modeling. We also suggest, based on mathematical principles, that reconsolidation does 
not affect only one memory attractor at a time, but rather the neighboring memories must be 
updated as well. Reconsolidation appears as a continuous phenomenon, yet it occurs in symbolic 
memory as well, thus the combination of symbols and continuous representations must lie in the 
brain side by side and inform each other. 

Following, we describe our introduction of high-level attractor systems that enable the study of 
memory reconsolidation properties from both the computational (behavioral) level and the 
algorithmic (functional) level. This would inform both neurosciences by characterizing the 
possible mechanisms of flexible memories, as well as computer science and engineering by 
introducing possible methods for memories that are flexible enough to handle dynamic 
environments. 

Dl: Reconsolidation Attractor Network (RAN): 

In the RAN model each memory is an attractor, the representation currently believed to underlie 
the persistent dynamics of memory. This model also fits, so called celebrity neurons, in which 
particular cells code for abstract concepts that may include different representations, such as a 
person's image, voice, name, identifying title, etc. Our RAN architecture consists of two levels. 
The first, which we call the state of the system, is based on state nodes or cells and enables the 
flow from input to an attractor. Different inputs may have overlap in the associated internal 
states. The state level of our system is reminiscent of neural network approaches. In the second 
level, each attractor is represented by a unique node and thus the attractors do not overlap even if 
the states generated by them would have high overlap. 
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Figure 1: The architecture of a Reconsolidation Attractor Network. The middle layer of internal 
space is a neural network, and is affected by both inputs and previously learned attractors. 
Attractors can change when the network gets close to them and flow stops. 

As part of our work, we introduced a possible algorithm to merge memories, or more generally 
to update a memory when the system receives a monotonic sequence of inputs, starting with an 
input associated with one memory attractor and going all the way to a different one. We 
demonstrate it by the task of recognizing a person who grows a beard. The memory model of the 
person growing a beard starts showing a growth of a beard as well, so that if the person arrives 
one day without a beard he would cause a sizable surprise. We also explain how related memory 
models show some modifications as well, which in our example translates to not having a big 
surprise if similar people also appear with a beard. Far memory models will not be affected by 
the monotonic updates; in particular the system will still be surprised if a woman or a baby 
appeared with a beard. RAN also demonstrates what happens to an attractor and what it 
represents after modifications. We ran the same experiment with different entropy values that 
affect both the measure of surprise and the stopping condition. Higher entropy in the stopping 
criterion causes bigger changes to near-by attractors because attractor activity distribution is not 
highly peaked. Additionally, the activity of closer attractors is not significantly different from the 
activity of the winning one. Lower entropy conditions halt the update of the internal nodes in a 
more peaked distribution, thus an attractor that does not win, has much lower activity and is 
affected very slightly by the input. 

Contextual effects are demonstrated for the sequence 505 / SOS, see Fig. 2. 
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Figure 2: Memory concepts change with a monotonic input sequence that leads toward a new 
concept: (a) Three faces are stored as non overlapping attractor memories (b) Seven inputs arrive 
sequentially featuring Frank growing a beard. The distance of each attractor from each input is 
depicted for when the attractors are held static. The Frank attractor increases its relative distance 
from bearded Frank (c) The distances of the three attractors from the seven inputs when attractors 
are flexible (d) The modified attractors are depicted: Frank changes to a bearded Frank, Nate will 
recognize both clean shaved and bearded Nates, and the Stu memory has not been modified. 

Figure 3: Contextual effect due to 
persistent continuous activity in the state 
nodes biases interpretations, (a) The high 
dimensional space of letters and digits is 
viewed in 2D via PCA applied to the 
image concatenated with the binary 
identification column, (b) Input starts 
with the digit 5 followed by 50% of 0-O 
and then by 50% of 5-S. The flow after 
the presentation of the first digit is 
depicted in red, the flow after the 
presentation of the 0-O is blue, and the 
flow after the presentation of the third 
input is green. The trajectory flows to an 
unstable middle point 5-S and then biased 
to 5. (c) When the first input is S, the 
same sequence leads to final recognition 
of S. The state nodes leave traces of 
previously seen inputs, which act as the 
prior bias to perception for the next input. 
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In the global view of the memory system, we have proposed a specific understanding of memory 
reconsolidation, employing three key elements: compositional generative models, on-line 
learning, and input-driven dynamic attractors. The first, compositional models, refers to models 
generated and transferred from long term into short term memory - demonstrating the ability to 
manipulate existing memories stored as prototypes, e.g., rotating 3D objects. Based on this 
ability, we propose storing, prototypes and operators in long term memories that help to 
manipulate and associate them. The manipulated prototypes become the instances of the models 
to reside in short term memory. 

a C LTM 
prototypes and operators 

Storing new 
or changed 

On-line 
learning 

Compositional 
generative 

models 

Models to 
understand 

percept 

c WM 
dynamic attractors 

Flow of perception 

b 
Algorithm 1 The Memory Reconsolidation framework 
Require: a new percept arrives 

Consider the models in STM 
if STM is not relevant {as measured by too high entropy}) then 

Generate new models to STM from LTM 
else {entropy is not too high} 

while percept is well explained or time limit passes do 
Update WM using percept and models 
Update model likelihoods using WM state 

end while 
Improve models in STM based on the WM 

end if 
Only once in long time Improve some prototypes or operators in LTM 

Figure 4: The global view of memory reconsolidation with RAN 



The second, on-line learning and updates of memories in short term memory, is a necessary 
element for a system that has to deal with a world that is stochastic and dynamic like ours. The 
ability to update models over time results in better specializations and generalization, error 
correction and the tracking of dynamical models as they monotonically change. Short term 
memory updates should occur during perception and action and not as a separate process, and 
hence we include the update of memories in our RAN. The third, the study of input-driven 
dynamic attractors, refers to the attractors rising in state space of the system. Continuous changes 
to existing attractors occur when a stream of inputs is mixed with different levels of attention and 
top-down direction. This study provides a dynamical system explanation to the context- 
sensitivity of memories, see Fig. 4 

The RAN model allows us to propose predictions in agreement with mathematical analysis and 
compare them with biological and psychological data. We suggest that modifications will not 
occur only to the same memory that has been manipulated by monotonic changes in the input, 
but also to other related memories. We also propose that the process that causes tracking of 
dynamic concepts is the same process that causes memory loss and we suggest how to entice or 
stop this process. We predict that different temporal attention may lead to different perception 
and different alterations of memories. 

Results appeared in H.T. Siegelmann, "Analog-Symbolic Memory that Tracks via Reconsolidation," 
Physica D: Nonlinear Phenomena, 237 (9), 2008: 1207-1214. 

D2: Kernel Based Memory (KBM): 

KBM is a model whose memory attractors do not lie in the input space, but rather in an implicit 
feature space with large or infinite dimension, giving rise to an unbounded number and size of 
memories. This model is isomorphic to the symmetric Hopfield network in the feature space 
spanned by the kernels, giving rise to a Lyapunov function for the dynamics of associative 
recalls, enabling the analogy between memories and attractors. 

The advantages of this novel approach to attractor memory are many. The input space is 
naturally composed of either continuous-valued or binary vectors. The number of attractors is 
independent of the input dimension, thus posing a saturated-free model that does not suffer from 
corrupted memories with memory overload. The amount of memory can scale up to any desired 
amount. 

In terms of flexibility, attractors are efficiently loaded, deleted, and updated on-line as in the 
RAN. A very attractive property, which we found and intend to develop further, concerns the 
fact that input dimensions can change for the different input strings with no a priori bound. This 
is different from all current associative memory models that require fixed input dimension. This 
property corresponds to the ability to remember data with more or fewer details and is very 
relevant for psychological modeling as well as engineering applications where different inputs 
are represented with different amounts of details. 



The process of consolidation in the kernel memory results in attractors in feature space and 
Voronoi-like space partitions that can be projected efficiently to the input space and describe 
clusters there, along with their basins of attraction. The process of reconsolidation enables the 
tracking of monotonic updated inputs, including moving and changing objects. Compared to 
biological and psychological data, memory representations resulting from reconsolidation were 
shown to be sensitive to the order of examples. When examples change orderly, the 
reconsolidation acts effectively to learn and update to the gradual changes of objects. When 
examples are shuffled and consistent direction of change is lost, existing memories do not 
update. We show the importance of input ordering in the KBM and how it works in flexible 
environments and with large-scale data beyond [1]. The advances cited are a significant step 
toward creating Artificial Intelligence via neural networks at the human level. 

Our network can be thought of as generalizing Radial Basis Function (RBF) architectures. 
Classical RBF networks [2] are 2-layered feed-forward networks, with one RBF and one linear 
layer. Recurrent versions inherit this 2-layered architecture and add time-delayed feedback from 
outputs to inputs. Our network enables a more general neural architecture; the neurons can 
assume a large variety of kernel activation functions and thus distinguish attractors that are 
similar or highly correlated. Furthermore, the kernel function can be changed during learning to 
reflect change in input dimension. We further prove that the attractors are either fixed points or 
2-cycles, unlike general recurrent RBF networks that may have arbitrary chaotic attractors; 
regular attractors are advantageous for memory systems. 

The memory system introduced here takes advantage of kernel methods and the theory 
introduced in the Support Vector Machine (SVM) [3], the leading classifier in the field of 
machine learning, and in Support Vector Clustering [4]. In support vector clustering, clusters are 
formed when a sphere in the (p-space spanned by the kernels is projected to input space. Here the 
clustering is a side effect of the consolidation process that creates memories as separated fixed 
points in the cp-space, and where the Voronoi polyhedron is projected on the formation of 
clusters in the input space. On top of it, clustering can be made dynamic during changes of 
inputs, improving the current state of the art in clustering. 

D.2.1 Kernel Hetero-associative and Auto-associative Memories 

A general framework of heteroassociative memory is defined from input to output space. The 
input vectors can be written as the columns of matrix X (n xm) and the associated vectors in the 
output space as the columns of matrix Y (pxm). A projective operator, i.e., a matrix transfers 
from X to Y. In order to overcome the common dependence of memory capacity on input 
dimension, we transform the input space to a new input space, which we call feature space, 
whose dimensionality is greater than n (it could even be an infinite-dimensional Hilbert space). 
The transformation (p is considered to be transferring from input to feature space. The kernel 
associative memory algorithm is written as follows: 

(l) 

(2) 

10 



with "+" being the Moore-Penrose pseudoinverse. If the columns are linearly independent, the 
pseudoinverse can be calculated by 

[<p(X)T = ([cp(X)fcp(X)y[cp(X)]T (3) 
Defining S as 

S = [cp(X)fcp(X) 
(4) 

sy=(<p(xl),<p(xJ))> 
the memory loads by: 

B = YS-1MX)f. (5) 
and the recall procedure is calculated by: 

(6) 

We note that during both loading (5) and recall (6) procedures, the function (p appears in the pair 
((p(w), cp(v)). We can thus define a Kernel function and gain computational advantage. We write 
S and z using the Kernel K: 

(7) 

The Kernel function is a scalar, and thus even if (p was a function of high dimension the 
calculation of the multiplication is a scalar and thus efficient. 

This memory is proven to associate loaded pairs correctly and to associate close by values 
otherwise. Furthermore, the kernel heteroassociative memory has no a priori bound on capacity 
in the following sense: for any given number of memories m we can find a kernel K such that the 
memory with this kernel will provide the correct association. 

Autoassociative memory: We next focus on the special case where input is associated to itself. 
Here the loading algorithm is the same as above and recall is facilitated by the iterative form 

(8) 
The activation function/, applied by coordinates, is a generalized sigmoid: it needs only to be a 
bounded monotonically increasing real-valued function over R such that its left limit approaches 
a, its right limit approaches b, and b>a. We prove that the recall procedure always converges and 
that the attractors are either fixed points or 2-limit cycles. See Fig. 5. 
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Procedure Associative-Recall 
Given: Kernel A', matrix S_1, attractors xt... x^, activation function /(•) 
Input: initial vector Xo. 

1. Set t — 0, and desired accuracy £. 
2. Compute vectors z( and y< : 

^-A^x,) 
y, = XTS-lzt 

3. Apply activation function to each coordinate of y(: x«+i == f(yt) 
4. If ||x<+i - xt|| > s then t = t + 1: goto stop 2. else goto step 5. 
5. Output x(+i. 

Figure 5: Associative recall: flow chart and algorithm 

D.2.2 Neural Networks Representation 

The autoassociative kernel memory can be directly implemented in a recurrent layered neural 
network (Fig. 6a): The network has n inputs. The first layer has m neurons that perform kernel 
calculations; the i-th neuron computes: 

The second layer has m neurons with weight matrix S~'. The neurons of the second layer can be 
either linear or have the generalized sigmoid activation function. The third layer also has n 
neurons and its weight matrix is XT. Its activation function can be linear or generalized sigmoid. 
The network has "one-to-one" feedback connections from the last layer to the inputs. In recall 
mode it works in discrete time, like Hopfield networks. 

Maximizing Neural Capacity: We can maximize the network capacity by approximating S by 
the matrix /. This approximation is suitable if the stored patterns are sufficiently distant in the 
kernel view. With this approximation one can save m connections without significant loss of 
association quality by eliminating the middle layer in Fig 6a and the other two layers will have 
weight matrices X and its transpose; see Fig. 6b. So, to store m vectors of dimension n we would 
need mn real numbers only (lossless coding). The memory capacity connections/neurons ratio is 
now larger than 1. 
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Robustness: A key question for any neural network or learning machine is how robust it is in the 
presence of noise. We prove that there is a pretty large attraction radius where patterns within go 
to the right memories. 

Outputs 

' [1.1-, First L**r, internal Association 
neurons 

n irKidts m nc-uron 3 M*morT. ir;ri-ui.;>ns 

Ai:livaticn 
furtcuon' 

Figure 6: (a) A neural-network that directly corresponds to the algorithm of learning and recall as 
described in a previous section, (b) Using approximation, the network can be minimized and the 
capacity maximized. 

D.2.3 Flexibility in the Attractor and Input Spaces 

The kernel associative memory can be made capable of adding and removing attractors 
explicitly. To add a new attractor to the network we create a new neuron in the 5" matrix layer. 
The dimension of the matrix S is increased from m to m+1 and we update the inverse of S 
efficiently using the linear-algebra identity: 

-1D\ A -1 (A + B)- = A"1 - A"'B(I + A"'B)A 

Similarly one can delete an attractor by reducing the dimension of S. 

(9) 

We also propose a mechanism that enables the network to handle heterogeneity of input 
dimension with no need to relearn the previously learnt inputs. Assume the current dimension in 
the input space consists of the "initial dimension" n and the "new dimension" q. We will choose 
a new kernel that combines the dimension. To save operations we will focus on kernels that can 
be written in an additive form: 

£„+?(*>y) = K„(xa,ya) + Kq(xhyb) 
+ Km,(^a,yb) + K,(xb^ya) (10) 

We prove that a small alteration to the kernels enables changing input dimensionality without 
losing previously learnt attractors. 
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D.2.4. Memory Consolidation and Reconsolidation 

The memory system with its loading algorithm enables consolidation of inputs into clusters using 
the competitive learning method where only the closest attractor is being updated. For 
reconsolidation we chose a global update, while retaining the properly, in which the closest 
attractor is updated most. 

A model of reconsolidation, based on Hebbian learning, was introduced in [1]. The update was 
based on additions and scalar multiplications in matrix operations. In our kernel associative 
memory, the corresponding space is no longer linear but rather is a Riemannian manifold. 
Additions and multiplications by a scalar are not defined in this space. To remedy the situation 
we define a Riemannian distance and a geodesic, which enables the memory to change gradually 
as new but close stimuli arrive. Suppose that initially we have a memory X(0) that contains m 
attractors. Then we obtain X(l) by replacing one attractor by a new stimulus that flows to it. The 
distance between X(0) and X(l) can be thought of as a measure of "' surprise" at the memory 
experience when it meets new stimuli. To reconsolidate, the memory moves slightly on the 
manifold from X(0) XoX(l). See the algorithm in Fig. 7. 

Procedure Geodesic-Update 

Given: Current state of the memory X° parameter a € [0; 1] 

Input: Current stimulus x,. time /. 

1. Run Associative-Recall of a memory X? on input x . d mote the ret all by x, 

2. Remove-Attractor x, from X',1 

3. Add-Attractor x, to the memory Denote » the result as x; 

4. Build a geodesic "y between X" and X,1 D( note its ten Htl, by L. 

5. Take a point Xf on -> in distance n L fi • mi x°. 

6. Set time t + 1 Output X'+l = X(* . 

Figure 7: The reconsolidation algorithm. 

A few demonstrations are shown next. 

Static consolidation:  The algorithm was applied on the MNIST database of handwritten digits 
[5]. A Gaussian kernel was chosen 

I-a  ' 

with 

K(x, y) = exp| —- \wk (xk - yk y 
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When only the best attractor is tuned, which we consider consolidation, the best recognition was 
91.1%, see Table 1. Our classification is slightly superior to other unsupervised clustering 
techniques. 
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Figure 8: Top: original versus downscaled images. Bottom: rotated digits. 

Clustering during change of input dimensionality: Training set was divided into two. The first 
half was given with a resolution of 14 xl4 (Fig. 8, top right) and the second half with full image 
size (28 ><28). The recognition quality went from 78.12% to 91.66% when each set was of size 
10,000 and it was slightly worse when each set was of 5,000 examples, see Table 1. 

Reconsolidation algorithm with rotating digits. A learning set of rotating digits was created. It 
contained 90,000 images obtained from 1,000 original digits (100 per class) by rotating them 
counterclockwise on angles from zero to 180 deg. In one experiment we first clustered the static 
images and then reconsolidated on the rotating images, we obtained 94.18 recognition rate. In a 
following experiment we relied only on the rotating input stream without prior classification: 
attractors were initialized with random digits from the whole database. We stopped looking at 
the input when reaching same excellent results, see Fig. 8 bottom, and Table 1. 
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Operation #Train Images #Test 
Images 

Class. 
Rate, % 

Note 

Consolidation 10,000 10,000 91.38 

Reconsolidation on 
static dataset 

10,000 10,000 90.72  to 
91.51 

Depends on sample ordering 

Consolidation on 
downscaled, 14*14 

10,000 10,000 78.12 

Add full size 28*28 
images 

+10,000 10,000 91.66 Tested on both small and large 
images 

Like above but with 
total 10,000 inputs 

5,000 small 
+5,000 full 

5,000 
small 
+5,000 
full 

76.8 
then 
89.2 

Classifying the static, 
and then re- 
consolidate the stream 

10,000 straight 
+90,000 rotated 

10,000 94.18 Tested on 10,000 images closest 
to final state 

Reconsolidation on 
rotated digits, no prior 
consolidation 

95340- 96780 
(Depends on 
initialization) 

10000 >94.18 Test as in the above row, stop 
the input stream when reaching 
the desired threshold of 94.18. 

Table 1: Clusters with kernel memories are superior to previous tests on the MNIST 
database. In all simulations the network had 1000 attractors, 100 attractors per class. 

Morphed faces. The goal of this experiment is both to show the performance of the 
reconsolidation process we describe on large-scale data and to compare its properties with the 
recent psychological study in [6]. We used the database Productive Aging Lab Face Database 
[7]. Faces were morphed using the software Sqirlz morph. Original size of all images was 
640x480. The useful area fell in the rectangle 320 x 240, and images were cropped to this size 
before being entering into the network. The database contained 150 morph sequences, each of 
them consisted of 100 images. 

In our simulations we created a network with 16 attractors representing 16 different faces; it had 
76800 input and output neurons, and two middle layers of 16 neurons each. Four arbitrarily 
selected network attractors are depicted in Fig. 9. A Gaussian kernel was chosen in order to 
simplify calculations with large scale data. 

When the learning order followed image order in the morphing sequence, attractors changed 
gradually and consistently. The ability to recognize the initial set of images gradually decreased 
when attractors tended to the final set. In the case of random learning order, attractors quickly 
became senseless, and the network was not able to distinguish faces. This experiment also 
demonstrates the efficiency of the reconsolidation processing kernel memories for high- 
dimensional data. 

16 



Figure 9: Morphed faces, examples of attractors during reconsolidation 

Rotating heads. This example focuses on rotating head images for reconsolidation based on the 
VidTIMIT dataset[8]. A video of each person is stored as a numbered sequence of JPEG images 
with a resolution of 512 by 384 pixels. The ability to track and recognize faces was tested on a 
set of 15 last frames from each sequence. With reconsolidation and ordered stimuli, the obtained 
recognition rate was 95.2%. If inputs were shuffled randomly, attractors got messy after 30-50 
updates, and the network did not demonstrate significant recognition ability. It can be seen how 
attractor images are blurred when head movement is fast (Fig. 10). 

20      40      60      80     100 

20      40      60      00     100 

20      40      60      60     100 20      40      60      80     100 

20      40      60      80     100 

Figure 10: Tracking rotating heads via reconsolidation. Attractors are blurred in fast motion 

Tracking the Moving Patriot: We analyzed videos of Patriot missile launches with resolution 
320 by 240, originally in RGB color, and transformed them to grayscale. The memory was 
loaded with a vector composed of two 40 by 40 pixel regions (windows) around the missile taken 
from two consequent frames and a two-dimensional shift vector indicating how the missile 
center has moved between these frames. Optimal number of attractors was found to be 16-20. 
Using memory reconsolidation algorithm we were able to calculate velocity vector every time, 
and therefore track the missile with great precision, with only average error of 5.2 pixels, see 
Figure 11. 
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Figure 11: Patriot missile. Original frame (a) and a processed frame (b). 

D.2.5 Summary 

We proposed the design of memory systems that can be used for improved thinking machines 
that are able to follow dynamically changing concepts and demonstrate sensitivity to context. 
The same memories are also useful in testing hypotheses regarding reconsolidation-like 
processes and dynamic memory tuning, which are relevant to human flexible memories. The new 
computational machines naturally combine learning from examples, high-level directions, and 
cognitive-like attention, and thus may change the state of the art of machine learning which is 
currently best equipped to produce rigidly single task oriented algorithms and handle and cluster 
static data. 
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F. Technology Transfer 

Our study provides a functional algorithmic understand to flexible memory tuning as occurring 
during retrieval, that is able to follow dynamically changing concepts and cluster them on-line 
with sensitivity to context. Importantly, the number of memories is independent of the input 
dimension and thus can grow as needed. It is possible that this new approach to memory can be 
embedded in robots to provide both a machine with optimal tracking capabilities as well as one 
that interacts smoothly with humans. 
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